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The structure of a premixed flame front propagating in a region of two-dimensional 
turbulence is investigated using full numerical simulation including heat release, 
variable properties, and one-step Arrhenius chemistry. The influence of reactant 
Lewis number (Le = ratio of thermal to species diffusivity) is reported for Le = 0.8, 
Le = 1.0, and Le = 1.2 flames. Local flame behaviour is described by comparing the 
local instantaneous turbulent flame structure (local consumption rate of reactants) 
to the steady one-dimensional laminar flame structure for the same thermochemical 
parameters. Statistics of flame front strain rates and curvature are calculated and 
global quantities of interest in modelling (flame surface area, mean reactant 
consumption rate per unit area of flame, and turbulent flame speed) are reported. 
Principal findings are : that probability density functions (p.d.f.s) of flame curvature 
are nearly symmetric about a near-zero mean; that the flame tends to align 
preferentially with extensive tangential strain rates ; that the local flame structure of 
the non-unity Lewis number flames correlates more strongly with local flame 
curvature than with tangential strain rate ; that the mean consumption rate per unit 
area is relatively insensitive to curvature and is controlled by the mean tangential 
strain rate; and, that more flame area is generated for Le < 1 than for Le > 1. 
Implications of the results for flamelet models of turbulent premixed combustion are 
discussed. 

1. Introduction 
The structure of premixed flames in turbulent flows is an important fundamental 

and practical question in turbulent combustion. In  applications such as reciprocating 
internal combustion engines, accurate modelling of turbulent premixed combustion 
is an essential step in formulating truly predictive multidimensional simulations that 
can be used to study aerothermochemical processes and to optimize designs. 

Because flame structure information is difficult to obtain experimentally, 
numerical simulations have become an important tool in complementing ex- 
perimental investigations of turbulent combustion. For the foreseeable future, 
numerical simulation of the full three-dimensional governing partial differential 
equations with variable density and transport properties and complex chemistry will 
remain intractable ; thus various levels of simplification will remain necessary. On 
one hand, the requirement to simplify is not necessarily a handicap: numerical 
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simulations allow the researcher a degree of control in isolating specific physical 
phenomena that is inaccessible in experiments. For example, one can ‘turn off’ heat 
release to study the influence of turbulence on chemical reaction without the 
confounding effects of chemistry on the flow field through density and fluid property 
variations. On the other hand, the highly coupled nonlinear nature of the governing 
partial differential equations demands that one remains wary when extrapolating 
results obtained in such idealized modelled systems to practical turbulent premixed 
flames. 

In the present study, the modelled system includes heat release, variable fluid 
properties, and simple chemistry in two-dimensional turbulence. While it is 
recognized that two-dimensional turbulence differs from three-dimensional tur- 
bulence (e.g. Batchelor 1953; Herring et d. 1974; Lesieur 1987), it is our feeling that 
the response of the physical flame structure to straining and curvature should be 
generic even if detailed statistical correlations (especially of small-scale quantities) 
differ quantitatively from what would be found in three dimensions. Restricting the 
simulations to two dimensions also permits a wider dynamic range of scales to be 
computed so that,  for example, higher-turbulence Reynolds numbers can be 
simulated while still resolving the flame structure. In  any case, the present results 
can be compared with three-dimensional constant-density computations (e.g. El 
Tahry, Rutland & Ferziger 1991; Cant, Rutland & TrouvB 1990b; Rutland, Ferziger 
& El Tahry 1990 ; Rutland & TrouvB 1990) to understand better the limitations and 
similarities of the two approaches. Some comparisons of this kind are offered in what 
follows. 

If chemical times are short enough compared to turbulence times, the flame zone 
is ‘thin’ and may be treated, in the limit, as a discontinuous interface separating 
fresh unburnt reactants from hot burnt products. The discontinuous interface model 
is valid only if the flame is thinner than any scale of turbulent motion. However, the 
concept of local laminar-like flame structure in turbulent premixed flames is 
appropriate well outside of this limit. For our purposes, we adopt the weak definition 
proposed by Poinsot, Veynante & Candel 1991 : a turbulent premixed reacting flow 
is in aJZamelet regime if any line connecting one point in the fresh gases to another 
point in the burnt products crosses at least one active flame front. The flamelet 
regime has been invoked widely as a framework for the construction of turbulent 
combustion models (e.g. Bray & Libby 1986; Candel et al. 1988; Pope & Cheng 1988; 
Cant & Bray 1988; Maistret et al. 1989; El Tahry 1990; Cant, Pope & Bray 1 9 9 0 ~ ;  
Bray 1990). There are two quantities of primary importance for flamelet models: (i) 
the total flame surface (the area of the interface separating fresh and burnt gases); 
and, (ii) the local structure of the individual flamelets. Although these flame elements 
are thin, their internal structure is influenced by the flow characteristics and has an 
influence on the global consumption rate of reactants. 

The objective of this work is to investigate the dependence of the local and global 
structure of premixed flames propagating into mixtures with non-unity Lewis 
number Le (Le = ratio of thermal to species diffusivities). The Lewis number has 
been identified in asymptotic analyses of laminar premixed flames as an important 
parameter influencing flame structure and stability (e.g. Williams 1985) : we wish to 
assess its importance in turbulent flames. 

The remainder of the paper is organized as follows. The following section contains 
a review of previous work on numerical simulations of turbulent premixed flames and 
the motivation for the present study. Section 3 provides an outline of the governing 
equations and numerical methods and a description of the diagnostics used to extract 
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the desired physical information from the simulations. Results are presented in $4. 
I n  $5 ,  several aspects of the computations and results are discussed; this includes the 
foreseeable effects of complex chemistry, the relevance of molecular effects in high- 
Reynolds-number turbulent combustion, and implications of the parameter ranges 
that have been investigated. The results are summarized in $6. Definitions of 
relevant scales and details of diagnostics are given in the Appendix. 

2. Background and motivation 
The use of numerical simulation as a tool for investigating turbulent flame 

structure is reviewed briefly with particular attention to the merits and drawbacks 
of two-dimensional simulations. Lewis number effects in laminar premixed flames are 
summarized next to motivate the present study of non-unity Lewis numbers in 
turbulent premixed flames. Finally, the influence of curvature and strain rate on 
premixed flame fronts is discussed. 

2.1. Numerical simulations of turbulent premixed flames 
We limit our discussion to ‘direct numerical simulations’ (DNS), i.e. computations 
in which all scales of turbulent motion from the largest energy-containing scales to 
the smallest dissipative scales are fully resolved both spatially and temporally so 
that no turbulence modelling is used. Moreover, we are interested primarily in 
calculations in which the flame structure is resolved. This is in contrast to  studies 
where the flame is treated as a propagating interface of infinitesimal thickness 
separating cold reactants from hot products (e.g. Kerstein, Ashurst & Williams 1988; 
Ashurst, Shivashinsky & Yakhot 1988; Ashurst 1990; Girimaji & Pope 1992). The 
interface, or flame sheet, type of calculations have added significantly to our 
understanding of flame topology and have provided quantitative information on 
statistical correlations that is useful in the construction of models of turbulent 
premixed combustion in the flamelet regime. 

Studies of the dynamical interactions between fluid flow and finite-rate chemistry 
in flamelet or non-flamelet regimes, on the other hand, require that the flame 
structure be resolved. However, the addition of chemical lengthscales and timescales 
that are of the order of or smaller than the smallest fluid-mechanical scales implies 
that, for a given spatial and temporal resolution, a smaller range of hydrodynamic 
scales can be simulated compared to computations in which the flame has no internal 
structure. Two-dimensional vortex methods have been used to study interactions 
between turbulent fluid flow and finite-rate chemistry in a number of papers 
including those by Ashurst & Barr (1983), Ghoniem & Krishnan (1988), and Ashurst, 
Peters & Smooke (1987). The last of these deals with non-unity Lewis number flames 
and is thus of particular interest in the present study. 

The first full three-dimensional simulations of premixed turbulent flames with 
finite-rate chemistry (constant density, zero heat release, single-step Arrhenius 
chemistry) have been reported by Rutland et al. (1990) (further results may be found 
in El Tahry et al. 1991). Among other things, their results included the distribution 
of local burning rate over a range of Damkohler numbers (ratio of a characteristic 
flow timescale to  a characteristic chemical timescale) to assess the applicability of 
laminar flamelet models: at high Damkohler numbers, the local structure of the 
turbulent flame was found to be that of an unstrained steady laminar flame while a t  
low Damkohler numbers, the local flame structure could not be correlated with that 
of a steady one-dimensional strained laminar flame. Further three-dimensional 
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constant-density simulations of premixed turbulent flames have been performed 
recently by Rutland & Trouv6 (1990) (a study of Lewis number effects) and by Cant 
et al. (1990b) (a study of statistics relevant to the Bray-Moss-Libby model of 
turbulent premixed combustion; e.g. Bray & Libby 1986; Bray 1990). In all cases, 
the Taylor-scale Reynolds number Re, has been limited to the range Re, < 20. 

A number of two-dimensional simulations including variable fluid properties and 
heat release have been reported recently by Poinsot and coworkers (Poinsot et al. 
1990,1991,1992 ; Meneveau & Poinsot 1991). These studies include a characterization 
of the scales of turbulent motion that influence flame structure (Poinsot et al. 1990, 
1991) and investigations of flame quenching (Poinsot et al. 1991; Meneveau & 
Poinsot 1991). The same two-dimensional code has been adopted for the present 
study. Compared to  three-dimensional constant-property simulations, two-dimen- 
sional variable-density simulations allow a wider dynamic range of scales (higher 
Reynolds and Damkohler numbers) and full two-way fluid-chemistry coupling. 
Values of relevant dimensionless parameters in the present study are given in 3 3. 
However, the dynamics of two-dimensional turbulence are not identical to those of 
three-dimensional turbulence (Batchelor 1953 ; Herring et al. 1974; Lesieur 1987). In  
particular, the vortex-stretching mechanism for the cascade of energy to pro- 
gressively smaller scales of motion is absent in two dimensions and the smallest scales 
of motion do not follow the usual Kolmogorov scaling. Instead, the microscales are 
based on the mean-square vorticity (enstrophy) and its dissipation rate. 

Our emphasis in the present study is on flame structure. Relevance of the present 
results to three-dimensional turbulent premixed flames demands, for example, that 
the response of the flame to hydrodynamic straining be reasonably generic in both 
two and three spatial dimensions. This is less restrictive than requiring that flow 
dynamics and statistics of small-scale quantities be quantitatively the same in two- 
and in three-dimensional turbulence. Further justification for the appropriateness of 
two-dimensional studies of premixed flame structure can be found in recent three- 
dimensional (constant density) work (Ashurst 1990; Cant et al. 1990b; Girimaji & 
Pope 1992) : the topology of a propagating surface in three-dimensional turbulence 
has been found to be primarily two-dimensional, particularly those surface elements 
having the highest curvatures. That is, a flame tends to be locally cylindrical rather 
than spherical in shape. Both two-dimensional and three-dimensional numerical 
simulations (and one-dimensional, when focusing on specific issues such as complex 
chemistry or radiation effects) will continue to be useful tools in fundamental 
studies of premixed combustion for some time to come. 

2.2. Lewis number effects in premixed flames 
We restrict our attention to a single-step reaction mechanism, 

R (reactants) -+ P (products), 

where the reaction rate wR is given by an Arrhenius expression with activation 
temperature T,, 

2ir, = B ~ Y ,  exp (-5). 
It is convenient to follow Williams (1985) and cast this expression in the form, 

th = wR/YE1 = BpYexp 
1-a(1-0) (3) 
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Here 0 is the reduced temperature, 0 = (T- q)/(q- q), where subscript ‘ 1 ’ refers 
to the fresh gases and ‘2’  to the burnt products (T, is the adiabatic flame 
temperature). The coefficients 9#, a,  and p are, respectively, the reduced pre- 
exponential factor, the temperature factor, and the reduced activation energy, 

9?=Bexp(-P/a),  a =  (q-TJ/q, p=aT,/T,. (4) 

The mass fraction of the reactants YR has been non-dimensionalized by the initial 
mass fraction of reactants YR1 in the fresh gases, B = YR/YR1, so that B varies from 
unity in the fresh gases to zero in the burnt gases. 

A normalized local flame speed in the turbulent flame (consumption speed or 
‘flamelet speed’) s: is defined by integrating the local reaction rate profile in a 
direction normal to the flame, 

s: = w dn/pl s! = s,/s!. ( 5 )  s 
Here s! is the undisturbed laminar flame speed for a steady planar laminar flame 
having the same Lewis number. 

Textbook discussions of thermodiffusive effects for premixed laminar flames reveal 
the following behaviour (e.g. Williams 1985). For Le = 1 (and subject to other 
assumptions consistent with those made above), the reaction rate is a unique 
function of the reactant mass fraction or temperature (0 + E = 1 everywhere). Thus 
the maximum reaction rate along the normal to the flame is fixed: the local 
consumption speed is controlled only by the flame thickness, and its variations are 
expected to be small. Asymptotic analysis for small perturbations from a planar 
flame (Clavin 1985) reveals that flame curvature concave towards the products or 
positive (extensive) tangential strain rates can reduce the local speed of advance of 
the propagating flame relative to the fresh gases, and conversely for curvature 
concave towards reactants or compressive tangential strain rates. 

For Lewis numbers other than unity, differential diffusion between heat and 
species leads to richer possibilities in flame structure. For Le > 1,  elements of flame 
surface that are concave towards the reactants are expected to burn faster, while 
elements that are concave towards the products are expected to have a lower burning 
rate compared to that of a planar flame. Positive (extensive) tangential strain will 
decrease the flamelet speed relative to that of an undisturbed laminar flame for 
Le > 1.  On the other hand, Lewis numbers less than unity display the opposite 
behaviour : lower burning rate for elements concave towards reactants ; higher 
burning rates for elements concave towards products ; and, increasing flamelet speed 
with extensive strain. 

Ashurst et al. (1987) reported two-dimensional numerical simulations of premixed 
flames with non-unity Lewis numbers in the limit of zero heat release. The 
thermodiffusive effects described above for non-unity Lewis number were observed 
in their simulations. Results were expressed in terms of the excess enthalpy relative 
to an undisturbed laminar flame; a correlation between strain rate and excess 
enthalpy was reported. Here, we calculate cases with higher turbulence intensity 
(tables 1 and 4), variable properties, and heat release. The local flame structure is 
found to correlate more strongly with the local flame curvature than with strain rate, 
while global flame behaviour depends on both strain and curvature. 
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t +  

FIQTJRE 1. Mechanisms that modify the curvature of a propagating surface element (Pope 1988) : 
(a)  bending; ( b )  self-propagation ; (c) stretching ; (d )  flow structures leading to strain ratecurvature 
correlation. For (a)-(c), -, surface at. time t , ;  ---, surface at time t ,  > t,. 

2.3. Strain rate and curvature : propagating surfaces 
In the previous subsection, strain rate and curvature influences have been discussed 
from the point of view of thermochemical effects in laminar premixed flames. Further 
insight can be gained by considering the kinematics of a propagating surface in a 
turbulent flow (Pope 1988; Candel & Poinsot 1990). In both of these references is 
derived the relationship among the instantaneous rate-of-change of surface area A ,  
the tangential strain rate a, (equation (A 17)),  and the local radius of curvature B 
(equation (A 15)) : 

'd =a,+--, 
1dA 
A dt a? 
-- 

where sd is the speed of advance of the propagating surface relative to the fresh gases 
(the displacement speed; Poinsot, Echekki & Mungal 1992). The first term on the 
right-hand side reflects the rate of area increase through hydrodynamic straining : 
extensive tangential strains act  to increase the surface area and conversely for 
compressive strains. The second term represents the change in area of a propagating 
curved surface : the area decreases for propagation towards the centre of curvature 
(9 < 0 in the present convention) and increases for propagation away from the 
centre. 

Equation (6) applies rigorously only for an infinitesimal propagating surface. For 
a non-zero-thickness flame, the question is approximate and the location at  which to 
evaluate a,, a?, and sd is not well defined. Nevertheless, this equation expresses the 
fundamental dependence of flame area on strain rate and curvature and motivates 
attempts to isolate strain effects from curvature effects on premixed flame structure. 

In fact, strain rate and curvature are not independent quantities. An equation 
governing the evolution with time of the curvature of a surface element propagating 
with constant speed has been derived by Pope (1988). This equation reveals three 
effects that modify surface element curvature : (i) an initially planar surface develops 
non-zero curvature through straining (bending) ; (ii) the curvature of an initially 
curved surface changes because of self-propagation (this is the dominant term a t  
large curvatures and can lead to infinite curvatures, or cusps); and (iii) stretching 
(tangential strain) of an initially curved surface modifies its curvature. These three 
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effects are sketched in figure 1.  We will return to this sketch later in 94. Even though 
curvature is tied to strain through a differential equation, it is of interest to assess 
the relative contribution of strain rate versus curvature in influencing the local and 
global characteristics of the turbulent flame. This is useful both for physical 
understanding and from a modelling point of view. 

3. Problem definition 
In this section, the governing equations, numerical methods, and computational 

configuration are summarized. Ranges of dimensionless parameters characterizing 
the computations are tabulated and discussed. In the final subsection, the diagnostics 
used to extract physical information from the numerical solution are described. 

3.1. Governing equations and numerical methods 
The set of equations solved is the compressible flow equations comprising 
conservation of mass, linear momentum, energy, and reactant mass fraction. In 
Cartesian tensor notation, 

apP 
at ax, axi -+-=- 

Here ui is the ith component of the fluid velocity, is the normalized reactant mass 
fraction defined earlier, p is the fluid density, p is the thermodynamic pressure, and 
Q is the heat of reaction per unit mass of fresh mixture (Q = -Ah; YR1, where Ah; is 
the heat of reaction per unit mass of reactant). The total energy density per unit 
volume is pE, and 7ij  us the viscous stress tensor, 

P p E  = g(puk UR) +- 
y-1 '  

The Arrhenius reaction scheme is defined by (1)-(4); this can be interpreted as a 
binary reaction where one of the reactants is always deficient. 

Fluid density follows an ideal gas equation of state with constant molar mass and 
constant specific heat ratio y. The molecular transport coefficients (viscosity p, 
thermal conductivity A ,  and species diffusion coefficient 9) depend on temperature 
in such a way that the Prandtl number Pr and Lewis number Le are constant, 

P = P,@T,/P,T), p = pl (T/T, )b ,  A = pc,/Pr, . = p/(pLep-r). (13) 
14 PLM 244 



412 D .  C. Haworth and T .  J .  Poinsot 

Periodic 
Isotherms 
/ 

Inflow 

Periodic 

outflow 

FIGURE 2. Schematic of two-dimensional computational configuration 
and the initial planar flame. 
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FIGURE 3. Normalized initial energy spectrum E ( k ) / E ( k i )  (equation 14) with up = 0.1, L, = 0.7. 

Using these assumptions and a Cartesian frame of reference, the governing 
equations are solved using a high-order finite difference scheme. The numerical 
accuracy is sixth-order in space and third-order in time (Lele 1990). Spatial 
derivatives are computed using a compact scheme and the time advancement is 
produced by a minimal-storage third-order Runge-Kutta method (Wray 1990). 
Boundary conditions are specified using the NSCBC method (Poinsot & Lele 1992). 
Further details concerning the system of equations solved and the numerical 
methods can be found in these papers. Typical grids contain 4002 grid points. 

A schematic of the rectangular computational domain is given in figure 2. The left- 
and right-hand sides of the box are inflow and outflow boundaries, respectively, while 
periodic boundary conditions are specified a t  the top and bottom. The calculations 
are initialized with reactants on one side of the box and products on the other ; the 
two are separated by a planar laminar premixed flame. The initial velocity field 
(turbulence spectrum) is specified at t = 0 and the system is allowed to  evolve in time. 
The initially planar flame is convected and strained by the turbulence while the 
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Case Le up/s? Li /8 ,1  t / r O  u'/s? '/8,1 Re, ' 1 '1  u,/s? ',/811 'q/'l 'q/'k 'q/'k 

I b  0.8 6.60 4.27 1.95 4.82 3.60 86 0.74 0.87 0.24 0.28 1.49 2.23 
2b 1.0 6.28 4.46 1.96 4.68 4.00 91 0.86 0.82 0.25 0.30 1.48 2.20 
3b 1.2 5.84 4.82 1.96 4.32 4.26 88 0.99 0.76 0.27 0.36 1.48 2.20 

TABLE 1 .  Dimensionless parameters for three primary cases at dimensionless time t /rO x 2.0, 
where r,, is the initial turbulence eddy turnover time 

combustion influences the fluid mechanics through dilatation and temperature- 
dependent properties (equation (13)). 

The initial velocity field is homogeneous and isotropic in the cold reactants with 
a two-parameter (r.m.s. velocity up and peak energy wavelength L,) energy spectrum 
E ( k ) ,  k being the wavenumber: 

~ ( k )  = $(2/~)t~/k,(k/k,)4exp{ - 2(k/ki)2)  (k, = ~x/L, ) .  (14) 

This spectrum is sketched in figure 3. There the principal features of (14) are evident : 
E ( k )  - k4 for k 4 k i ;  E(k),,, = E ( k i ) ;  and, E ( k )  N exp{ -2k2} for k % ki .  The results 
have been found to be insensitive to the initial post-flame turbulence specification, 
as the temperature-dependent viscosity largely suppresses turbulent velocity 
fluctuations in the hot products. 

3.2. Scales and dimensionless parameters 

Relevant scales for this problem are defined in the Appendix. Three kinds of scales 
are introduced : scales characteristic of the energy-containing turbulent motions u', 
1, and 7 ((A 1)-(A 5 ) ) ;  scales characteristic of the smallest turbulent motions u,,, l,,, 
and r,, (enstrophy-based, (A 10)) and u,, Z,, and T, (Kolmogorov microscales, (A 11)) ; 
and, chemical scales s!, all, and T~ ((A 12)-(A 14)). All turbulence scales have been 
calculated as volume-averaged quantities conditioned on being in the fresh reactants 
ahead of the flame. Unambiguous definition of a length scale 1 characteristic of the 
energy-containing motions is problematic in view of the non-equilibrium two- 
dimensional nature of the turbulence. The value adopted (equation (A5) )  is 
1 = 0.421, = 0 . 4 2 ~ ' ~ / ~ .  This choice allows direct comparison with turbulence model 
(e.g. k - E )  results, and is in most cases close to the value based on two-point velocity 
correlations (equation (A 4)). Kolmogorov scales are reported for comparison 
purposes only: these are not expected to represent the smallest scales of motion in 
two-dimensional turbulence. Chemical scales are based on the speed and thickness 
(defined using the temperature profile) of an undisturbed steady planar laminar 
flame at  the same Lewis number as the turbulent flame. 

The values of various dimensionless combinations of scales for the three runs that 
are the focus of the present study are reported in table 1. These three runs are 
(initially) identical except for the Lewis number; that is, the same flow realization 
has been used as the initial condition for all three. The flames of table 1 have evolved 
for about two turbulence eddy turnover times. Table 4 is similar, summarizing all 
runs that have been analysed. While the bulk of our analysis and discussion is based 
on the runs of table 1,  any differences or interesting features that result from the 
different parameter ranges in table 4 will be noted as appropriate. Except as so 
noted, it may be assumed that conclusions drawn from Cases lb,  2b and 3b are 
supported by the results of the other runs as well. Chemical and fluid parameters that 
have been held fixed for all runs are given in table 2. 

14-2 
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U B 9 b Pr h 

0.75 8.00 146 0.76 0.75 1.4 

TABLE 2. Fixed parameters for all cases 

Some comments on the regime of combustion implied by the parameters of tables 
1, 2, and 4 are appropriate. It can be seen in table 1 that a t  t / 7 ,  z 2.0, these three 
runs are in a regime where the turbulence is intense relative to the laminar flame 
speed (u’/s: M 5), the flame is thin compared to the largest turbulent lengthscales but 
is thicker than the smallest (l/dIl z 4, 1,,/811 w 0.3), and chemical times are of the 
order of the longest turbulence timescales ( T / T ~  w 1) and are three to four times 
longer than the shortest turbulence timescales ( ~ , , / 7 ~  x 0 . 3 4 4 ) .  Turbulence 
Reynolds numbers Re, are close to 100, giving a range of scales of motion of 1/1, w 15. 
The ratio of the smallest hydrodynamic velocity scale to the undisturbed laminar 
flame speed is u,,/s: z 0.8-0.9. The enstrophy-based microscales are somewhat larger 
than the Kolmogorov scales by a ratio of about 1.5 for lengthscales and 2.2 for 
timescales. 

The critical Lewis number Le, for diffusive-thermal instability can be estimated 
using the formula derived for a single-reactant system with constant specific heats 
and subject to other assumptions as enumerated, for example in Williams (1985) : 

Le, = 1 -/3-’ { 2R0 In (Ro)/  r-’ x-l In (1  + x) dx} , 

Here R, is the density ratio and /3 is the reduced activation energy (equation (4)). For 
the present /3 = 8 and R, = 4, Le, z 0.385. Thus the three Lewis numbers considered 
(0.8, 1.0, and 1.2) all lie above Le,. 

The ranges of scales for all runs and their evolution with time can be seen in table 
4. In  general, the turbulence velocity scale u’ decays slowly over the course of a run 
while the lengthscale 1 grows somewhat faster so that 7 = l/u‘ and the Reynolds 
number Re, increase with time ; in low u’ cases (Cases 5 and 6), Re, decreases over part 
of the run. Turbulence intensity u’ increases late in Case 4, presumably because of 
imperfect turbulence inlet boundary conditions. The microscale 1, increases with 
time. The lowest Reynolds number run is Case 5 : there the integral scale is smaller 
than the laminar flame thickness and the turbulence intensity is of the order of the 
laminar flame speed. At the other extreme is Case 4 where u’/s: w 7-8 and Z/al1 > 10 
at later times. The largest value of the ratio Z,,/811 is for Case 8 (Z,,/Jl1 c 0.5); for all 
other cases, the microscale 1, is a quarter to a third of the undisturbed laminar flame 
thickness. 

In the classic picture, the ratios of scales for all cases reported here places these 
flames in the transition between ‘thick ’ and ‘thin ’ flames distinguished, loosely, by 
the criterion 17/811 = 1 (Williams 1985). We are thus far from the limit of an 
infinitesimally thin flame sheet separating reactants from products. The overlap of 
chemical scales and turbulence scales complicates the analysis but perhaps renders 
the results more typical of practical turbulent flames (see $5). 

The range of scales of turbulent motions that can influence the local flame 
structure has been debated widely. Recent numerical simulations by Poinsot et al. 
(1991) suggest that the smallest scales of motion cannot influence the flame structure 
because motions on the scale of 1, or 1, lack sufficient energy. This issue is not 
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FIGURE 4. Examples of normalized (by the maximum in the field) reaction rate contours for several 
flames. Isocontours 0.015, 0.05,0.25, and 0.6 are plotted: (a )  Case 4 b ;  ( b )  Case 4 d ;  (c) Case 3 b ;  (d )  
Case 6 c ;  ( e )  Case 5 c ;  (f) Case 8 c .  

addressed here directly. We do adopt a laminar flamelet approach in our diagnostics 
and discussion of these flames. It will be clear, we believe, that this is the most 
appropriate framework in which to discuss the results. 

Typical contours of reaction rate for several flames are shown in figure 4. These 
illustrate the variety of flame behaviour that results from the differences in 
parameter ranges seen in tables 1 and 4. For the highest turbulence intensity (Case 
4 at early times), islands of reactants are formed (figure 4a) .  These must eventually 
burn out for these adiabatic flames since there is no mechanism for extinction. The 
same flame at  a much later time is shown in figure 4 ( b ) .  There it can be seen that the 
initially planar flame now spans over half of the computational domain. The other 
four flames presented in figure 4 illustrate the effect of changing the initial turbulence 
lengthscale (figure 4(c wus. d ) )  and the initial turbulence intensity (figure 4(d  ws. e ) )  
while all other parameters remain fixed. The smaller lengthscale of figure 4 ( d )  
compared 4(c) yields a flame with less large-scale wrinkling while the smaller 
turbulence intensity of figure 4 ( e )  compared to figure 4 (d )  results in a flame that is 
only mildly perturbed from the undisturbed planar laminar flame. Figure 4(c) 
represents one of the three flames that will be analysed in detail in the following 
section (Case 3 b ) .  Figure 4 (f) shows a flame with low u' and large 1 :  in this case, there 
is large-scale folding but no fine-scale wrinkling. 
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3.3. Diagnostics 

Postprocessing of the two-dimensional computed fields (snapshots at  fixed times) 
begins by defining a flame front as an isocontour of either reduced temperature 8 or 
of normalized reactant mass fraction P. Unless otherwise specified, the = 0.3 
isocontour has been used to define the flame in the results that follow ; this contour 
lies slightly in front of the reaction zone towards the fresh gases. 

Once the flame has been located, the local normal n (equation (A 16)), local flame 
curvature W-’ (equation (A 15)), and local hydrodynamic strain rates normal to and 
tangent to the flame an and a, (equation (A 17)) are readily computed. Curvatures 
concave towards the hot products are taken to be positive. Details can be found in 
the Appendix §A 2. Because the present computations include dilatation effects, it  
is important to distinguish between the tangential and the normal strain rates: the 
tangential component is used here for purposes of correlating the local flame 
structure since the normal component is dominated by the volume expansion 
through the flame. Sensitivity studies show no systematic dependence of the 
calculated distribution of tangential strain rates and curvatures to choice of flame 
isocontour in the range 0.2 < < 0.6 for our runs. The normal strain rate, on the 
other hand, is extremely sensitive to this choice. 

To compile statistics of the local structure of the turbulent flame, a set of one- 
dimensional profiles normal to the flame are taken. Typically 500-1000 profiles are 
obtained along the contour defining the flame. We compare these local turbulent 
flame profiles with the steady one-dimensional laminar flame profile for the same 
chemical and fluid properties. Of particular interest is the distribution along the 
flame of the normalized local flamelet speed 8: of equation (5). 

The total flame area (length in two dimensions) and area-weighted (arclength- 
weighted) statistics of s*, g-l, a,, and a, are calculated. The mean consumption rate 
of reactants per unit area of flame surface (‘ mean flamelet speed ’), normalized by the 
laminar flame value, is computed as, 

(8:) = (Sl/SD = J sl* dl/L,larne = 1 81 dl/ (sy Lelame) 3 (15) 
h a m e  h a m e  

where Lilame is the flame length. The global fuel consumption rate is calculated as the 
area integral of the reaction rate term in (10). This is related to the mean flamelet 
speed (sl) and flame surface-to-volume ratio .Z (length-to-area ratio in two 
dimensions) as follows : 

= J pi 81 d l / ~  = pi(S1) Lelarne/S = pl(81) ~3 (16) 
h a m e  

where S is the total area of the computational domain. A normalized flame length LZ* 
and turbulent flame speed sg are defined as, 

LF* z/Co = ~%larne/Lflarneo7 (17) 

(18) 
_ _  

sg = w/wo = (s?) LP, 
where the subscript ‘0’ refers to the value at  time t = 0 for the initially planar flame. 
A check of self consistency of the diagnostics is to verify the equality between s$ 
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-0.90 
FIGURE 5. Examples of computed fields at one instant of time, Case 3b (Le = 1.2, t / ~ ~  = 1.96): (a) 
normalized temperature 8 (=  0.05,0.1,0.3,0.5,0.7,0.9,0.95, 1.005); (b) normalized reactant mass 
fraction Y (=  0.05, 0.1,0.3,0.5,0.7,0.9,0.95); (c) normalized reaction rate w/w,,( = 0.015, 0.05, 
0.25, 0.6); (d )  normalized vorticity Q / l Q m a x l (  = f0.05, f0.22, f0.39, f0.56, f0.73, +0.9; -, 
R > 0, ---, D < 0). 

calculated as s$ = ~s2i )da / (~swda) ,  versus s$ = (s:) 9*: these are found to agree 
to within a few per cent in all cases. 

Typical fields of temperature, reactant mass fraction, reaction rate, and vorticity 
are shown in figure 5 (Case 3b) .  There it can be seen (as in figure 4) that the initially 
planar flame has been strongly deformed by the turbulence. The suppression of post- 
flame velocity fluctuations by viscosity is evident. Another point that can be made 
is that for this non-unity Lewis number case, differential diffusion of heat versus 
species results in mass fractions and temperature that are not simply related by 
0 + = 1 .  In particular, temperatures behind the flame for the Le = 1.2 flames 
exceed the adiabatic flame temperature : there is a pocket of 0 > 1 behind each of the 
concave-towards-reactants folds. 

4. Results 
Results for Le = 0.8,l.O and 1.2 flames are reported, concentrating on the Cases 1 b,  

2 b and 3 b of table 1. We begin with presentation and discussion of statistics of flame 
front curvature and strain rates. Next, the local structure of the turbulent flame is 
described; the local flame structure is compared with that of an undisturbed planar 
laminar flame at  the same Lewis number. Finally, global quantities of interest in the 
description of turbulent premixed flames (flame surface, mean consumption rate per 
unit area of flame, and turbulent flame speed) are given. Further discussion of the 
results can be found in $5.  

4.1. Statistics of Jlame curvature and strain rate 
Typical p.d.f.s of flame curvature (normalized by the undisturbed laminar flame 
thickness i$J are shown in figure 6. It may be seen that the p.d.f.s are close to 
symmetric with mean values near zero and with few curvatures exceeding the 
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1 ,  I 

- 3  -2  - 1  0 1 2 

Curvature x laminar flame thickness 
FIGURE 6. P.d.f.5 of flame curvature 9-' normalized by the undisturbed laminar flame thickness 
a,, for the same Lewis number: 0, Case i b ,  Le = 0.8; A, Case 2 b ,  Le = 1.0; 0,  Case 3 b ,  Le = 1.2. 

reciprocal of the laminar flame thickness. The smallest radii of curvature are equal 
to about +Sl1, consistent with results obtained by Poinsot et al. (1992) in a study of 
Bunsen burner flame tips. Although the most probable curvature is higher for 
Le = 0.8 than for Le = 1.2 for the particular case shown in figure 6, this is not 
statistically significant : no systematic dependence on Lewis number is found. 
Curvature p.d.f.s for all runs at all times share these features. However, it must be 
pointed out that all Lewis numbers used in this study are above the critical Lewis 
number. Values of Le less than Le, NN 0.385 might lead to different conclusions. 

Tabulated mean and r.m.s. curvatures (normalized by S,,) are reported in table 3. 
There does appear to be a weak systematic bias towards negative curvatures 
(concave towards the reactants) in the mean values; the maximum mean curvature 
magnitude for any run is (9-l)*Sl1 x -0.1 for Case 1 at t/7,, = 1.94 (not shown in 
table 4). The r.m.s. radii of curvature are of the order of one to two flame thicknesses. 
Significant asymmetry in the flame curvature p.d.f.s was fund in the three- 
dimensional computations of Rutland & Trouvd (1990b), which were performed for 
smaller values of u'/sy and constant density. Curvature p.d.f.s are expected to 
become more symmetric with increasing u'/$ (Becker et al. 1990; Bray 1990); such 
a trend is not evident in the present simulations. 

One important difference between surfaces propagating with constant speed (e.g. 
Girimaji & Pope 1992) and flames is in the evolution of curvature. A flame must 
consume reactants to propagate, and regions of a flame that are strongly curved 
towards the reactants will not continue to propagate with constant speed to form a 
cusp (infinite curvature) : minimum radii of curvature are limited to values that are 
of the order of (but smaller than) the laminar flame thickness. Thus the strong bias 
towards negative curvatures (in the present sign convention) seen in the simulations 
of Girimaji & Pope (1992) is not apparent in the present calculations. 

P.d.f.s of tangential strain rate are given in figure 7. There it can be seen that 
positive strain rates are dominant - that is, the flame aligns preferentially with 
extensive strains. While the p.d.f.s again are noisy, examination of results for all 
cases computed reveals no apparent systematic dependence on Le. The dominance of 
extensive strain rates is also seen in three-dimensional simulations (Ashurst 1990 ; 
Girimaji & Pope 1992; El Tahry et al. 1991; Cant et al. 1990b; Rutland et al. 1990). 
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- 5  -4  -3 -2 - 1  0 1 2 3 4 5 
Tangential strain rate x flame time 

FIQURE 7 .  P.d.f.s of flame tangential strain rate a, normalized by the chemical time 7, for the 
same Lewis number: 0, Case l b ,  Le = 0.8; A, Case 2b, Le = 1.0; a, Case 3b,  Le = 1.2. 

A strain Karlovitz number Ka,, is introduced to reflect the importance of turbulent 
straining : 

where (a , )  is the area-weighted tangential strain rate on the flame. Values of Ka,, for 
the various runs have been tabulated in table 3. It can be seen that, following an 
initial abrupt increase from zero,i the strain Karlovitz number tends to decrease 
with time. Values range from 0.2 to about 2 with the lowest values for Case 5 and the 
highest for Case 4. For the three cases that we are focusing on here (Cases 1 b ,  2b and 
3b), Kast > 1 .  

The tangential strain rate in figure 7 and equation (19) has been scaled with the 
chemical time T~ to emphasize interactions between chemistry and turbulence. If 
instead, we scale the mean tangential strain rate with the enstrophy micro-timescale 
7, as, 

then it is found that the value of C, various from zero at the beginning of the 
computations to a more or less steady value of 0.20-0.70 (table 3). We can also scale 
the mean tangential strain rate with the Kolmogorov timescale T,, 

Ka,, = (a ,> .Tf ,  (19) 

(a,) = C,/T,’ (20) 

= ck/Tk. (21) 

In  this case, values of Ck range from 0.15 to 0.30 once the flame has become 
sufficiently wrinkled (t/T,, > x 1, table 3). In  three-dimensional simulations of 
propagating surfaces in forced isotropic turbulence, C, is found to depend on the 
propagation speed p :  for 131% = 1.0, c k  x 0.16 (non-area-weighted statistics; 
Girimaji & Pope 1992). Yeung, Girimaji & Pope (1990) reported C, = 0.28 for 
material surfaces (using area-weighted statistics) and this same value was found for 
flames (constant property surfaces) propagating in low-Reynolds-number decaying 
turbulence by Cant et al. (1990b). We again emphasize that T, is probably not a 
physically meaningful scale for two-dimensional turbulence; i t  is shown here only for 
comparison with three-dimensional results. 

t For the initially planar flame, <a,) = JL,,,,,(aup/i3x2) dZ/L,,,,, = 0 by virtue of the periodic 
boundary condition in x2, even though the flame is strained locally. This points out a weakness of 
characterizing the strain by (a,) alone. 
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Curvature x laminar flame thickness 
FIQURE 8. Scatter plots of normalized flame tangential strain rate a, 71 versus normalized flame 

curvature W-'6,,: (a) Case l b ,  Le = 0.8; ( b )  Case 2b ,  Le = 1.0; (c) Case 3 b ,  Le = 1.2. 

An important difference between the present results and those obtained for 
propagating surfaces (Girimaji & Pope 1992) is in the dependence of C,  on p / u ,  
(analogous to our s:/u,,). In  most of the present simulations, s:/u,, is close to unity 
(table 4) and C, and C,, remain more or less constant after t/70 > 1. The most extreme 
values are for Case 5 (low C, and C,) and Case 8 (high C,, and ck), two runs with low 
initial u'/s:. For propagating surfaces, Girimaji & Pope (1992) find that C, decreases 
with increasing p/uk while no clear trend is evident here. 

Another interesting feature of the strain-curvature statistics is that in all cases, a 
strong correlation is found between local tangential strain rate and local flame 
curvature. This correlation is illustrated in figure 8 for Cases 1 b,  2b and 3 b ;  similar 
results are found in every case. Positive curvatures (concave towards products) 
correlate with negative (compressive) tangential strain rates and negative curvatures 
with extensive tangential strain rates. This is somewhat different from the results 
found for propagating surfaces (Girimaji & Pope 1992) : there, highly curved regions 
correlated with compressive strain rates and less curved regions with extensive strain 
rates, especially at  higher propagation speeds. It appears that the dominant 
mechanism producing high local tangential strain rates in the present simulations is 
a counter-rotating vortex pair : this structure tends t o  correlate curvature and strain 
rate in the manner seen in figure 8 (figure id ) .  Although we believe that this 
curvature-strain rate correlation is a result of the asymmetry of the turbulence (high 
in the pre-flame gases, low in the post-flame region), we reckon that the specific 
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X 

FIQURE 9. Local reaction rate profiles normal to the turbulent flame (lines) superposed on the 
steady undisturbed planar laminar flame reaction rate profile (symbols) for the same Lewis 
number. Profiles are sampled uniformly along the turbulent flame: (a) Case l b ,  Le = 0.8; ( b )  Case 
2b ,  Le = 1.0; (c) Case 3b,  Le = 1.2. 

features of the computation (two-dimensional, periodic boundary conditions in z2) 
also might play a role; this result should be investigated in other geometries. Volume 
dilatation coupled with curvature may also be a factor. In this scatter plot and those 
that follow, samples are distributed uniformly in arc length along the flame. Thus the 
density of points in a specified region of each plot is proportional to the length (area) 
of flame having the values associated with that region. 

A consequence of the correlation between tangential strain rate and curvature is 
that for both the Le = 0.8 and the Le = 1.2 flames, strain and curvature influences on 
s: tend to work in opposite directions. That is, for Le = 0.8, extensive tangential 
strains which tend to increase s: occur more frequently with negative (concave 
towards reactants) curvatures which tend to decreases:. And, for Le = 1.2, extensive 
tangential strains which decrease sf correlate with curvatures concave towards the 
reactants which speed up the flame. 

4.2. Local flame structure 

The local flame structure, as illustrated through one-dimensional profiles of reaction 
rate, is shown in figure 9 for each of the three Lewis numbers simulated. There it is 
clear that the local flame structure is everywhere nearly identical to that of an 
undisturbed laminar flame for Le = 1 (figure 9b) while for non-unity Lewis numbers, 
there is no collapse of the local turbulent flame profiles onto the one-dimensional 
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-2.5 - 2  -1.5 - 1  -0.5 0 0.5 1 1.5 2 2.5 

Curvature x laminar flame thickness 
FIGURE 10. Scatter plots of normalized local flamelet speed s: versus normalized local flame 

curvature W-'6,,: (a)  Case i b ,  Le = 0.8; ( b )  Case 2b,  Le = 1.0; ( c )  Case 3 b ,  Le = 1.2. 

undisturbed laminar flame profile (figure 9a, c). The Le = 0.8 reaction rate profiles 
tend to lie above the undisturbed laminar flame profiles (at the same Lewis number) 
while the Le = 1.2 profiles generally are lower than the corresponding laminar profile. 
This general trend is compatible with the dominant extensive strain rates which 
decrease s: for Le > 1 and increase s: for Le < 1.  

From the discussion of thermodiffusive effects given earlier, we expect to see a 
correlation between local flame curvature and the local flamelet speed ; indeed, this 
is the case. Figure 10 illustrates this correlation for each of the three Lewis numbers 
computed. For Le = 0.8 (figure 10a), flame elements concave towards reactants tend 
to have lower local flamelet speed and conversely for elements concave towards 
products; for Le = 1.0 (figure lob), there is at  most a weak correlation between local 
curvature and local flame structure; and, for Le = 1.2 (figure lOc) ,  the correlation is 
opposite to that shown in figure 10a. Similar correlations between s: and W-' are 
observed in most of the Cases tabulated in table 4 for t /70 > 0 .  The numerical 
evaluations of curvature and of the integral along the flame normal for SF (equation 
(5)) are somewhat noisy, however; thus the correlation with W of the maximum 
reaction rate along the flame normal tends to be clearer than the correlation of s?. 
The Le = 1.2 scatter plots generally show a weaker correlation for W > 0 than for 
W < 0 (figure 1Oc). 

Since Ka,, > 1 for the three runs that we are concentrating on, we might expect to 
see a correlation between local flamelet speed and local tangential strain rate. When 
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Tangential strain rate x flame time 
F'IGURE 11. Scatter plots of normalized local flamelet speed $ versus normalized local flame 
tangentialstrainratea,-r,:(u)Caselb,Le = 0 . 8 ;  (b)Case2b,Le = 1.0; (c)Case3b,Le = 1.2;(d)Case 
8c,  Le = 1.2. 

the data are plotted in this way, the scatter plots of figure 11 result. There is no 
apparent systematic correlation evident for the non-unity Lewis number case of 
table 1 ; for Le = 1.0, a small negative slope can be seen in figure 11 ( b ) ,  consistent 
with our expectation that extensive strains will slow the Le = 1 flame. In fact, for low 
Ka,, cases, the correlation of s: with local tangential strain rate can be opposite to 
the expected trend for a planar laminar flame (figure l l d ) .  This is a result of the 
strong curvature-strain rate correlation and the opposing influences of W-' and a, on 

That the correlation of s: with 9-l tends to be stronger than the correlation of s: 
with a, implies that curvature plays the dominant role in determining the local flame 
structure for non-unity Lewis numbers, at least over the parameter ranges calculated 
here. This occurs in spite of the fact that Kast > 1 for most of these runs and in spite 

s: . 
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0.5 1 1.5 

Flame speed/laminar flame speed 
FIGURE 12. P.d.f.s of normalized local flamelet speed 8::  0,  Case l b ,  Le = 0.8; 

A, Case 2b ,  Le = 1.0; 0 ,  Case 3b,  Le = 1.2. 

of the counterbalancing effect of the curvature-strain rate correlation seen in figure 
8. This does not mean that turbulent straining is not important: evidence to the 
contrary is presented in the following subsection. 

4.3. Global quantities 
The mean reaction rate along the turbulent flame (mean flamelet speed) and the 
flame surface area are quantities of interest in constructing flamelet models for 
turbulent premixed combustion. I n  figure 12, examples of p.d.f.s of the normalized 
local flamelet speed in the turbulent flame are shown for each of the three Lewis 
numbers. For non-unity Lewis numbers, it  can be seen that the p.d.f. of flamelet 
speed is broadened and shifted relative to Le = 1.0. The unity Lewis number case 
shows only a small spread about the undisturbed laminar flame speed. The area- 
averaged normalized mean flamelet speeds ( 8 : )  for the three cases shown in figure 12 
are 1.14 (Le = 0.8); 1.00 (Le = 1.0); and 0.86 (Le = 1.2) .  Table 3 reports ( S T )  for 
all runs. There it can be seen that (8:) remains close to unity for the low Re,, Le = 1.2 
runs of Cases 5 and 6. 

As mentioned earlier, the density of points in the scatter plots of figures 10 and 1 1  
is proportional to the area of flame in each region of the plots. If we model the scatter 
plots of figure 10 as being linear (8: = m9-l + b ;  m x 0.3 and b x 1.2 for figure 10a 
in the normalized units plotted there ; m x -0.3 and b x 0.8 for figure 1Oc) and model 
the curvature p.d.f.s of figure 6 as being symmetric with zero mean, then curvature 
would have no influence on <sf) and straining effects can become apparent. The 
shifting of (SF) to values greater than unity for Le < 1.0 and to values less than unity 
for Le > 1.0 is consistent with the positive mean tangential strain rate (a , )  seen in 
figure 7 and table 3. Thus while curvature is dominant in influencing the local flame 
structure, the global consumption rate per unit area of flame (8:) appears to be 
dominated by the mean tangential strain rate. 

For propagating surfaces (Girimaji & Pope 1992), it has been found that the strain 
rate following a propagating surface element is sustained for times of the order of the 
turbulence micro-timescale 7k. Curvature of a flame element can be expected to be 
sustained longer for 9 < 0 than for 9 > 0 because self-propagation amplifies 
negative curvature but reduces positive curvature. Moreover, the thermodiffusive 
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0 1 2 3 4  

0 1 2 3 4  0 1 2 3 4  

Time Time 
FIQURE 13. Evolution with normalized time t /70 of normalized turbulent flame speed s,*(lines) and 
flame length 9* (symbols): (a) Case l b ,  Le = 0.8; (b)  Case 2b, Le = 1.0; (c) Case 36, Le = 1.2; (d) 
s$ versus t /70 for three Lewis numbers. 

effect is expected to  sustain flame curvature for Le < 1 (departures from planar 
amplified) longer than for Le > 1 (departures from planar damped). Thus there are 
mechanisms by which we can expect flame curvature to  be relatively more important 
for 9 < 0 than for W > 0, and more important for Le < 1 than for Le > 1.  The results 
of figure 10 are consistent with this: there i t  appears that  curvature is dominant for 
Le < 1 for both positive and negative curvatures (figure 10a) while for Le > 1, 
turbulent straining is able to weaken the otherwise strong correlation of sf with 
W for W > 0 (figure 1Oc). 

Figure 13 illustrates the Lewis number effects in a different way. There the 
variation with time of the normalized turbulent flame speed 8; (equation (18)) and 
normalized flame length 2'* (equation (17) )  are plotted as functions of time for Cases 
1, 2 and 3. The turbulent flame speed is (normalizations aside) the product of the 
mean flamelet speed and the flame length. The interesting finding is that  the 
turbulent flame speed increases more rapidly than the flame area for Le = 0.8; that 
for Le = 1.0, these two quantities evolve identically; and, that  for Le = 1.2, the flame 
surface increase exceeds the turbulent flame speed augmentation. Figure 13 (d )  
repeats the turbulent flame speed curves for the three Lewis numbers to emphasize 
the decrease in turbulent flame speed with increasing Lewis number. 

We have already seen one mechanism for the strong Lewis number dependence of 
s;, namely, the increase in the mean consumption rate per unit flame area (sf) for 
Le < 1 and conversely for Le > 1.  A secondary cause is that  (slightly) more flame area 
is generated for Le = 0.8 than for Le = 1.2. The difference is small, about 5-10%, for 
the cases shown in figure 13. This effect presumably would be more pronounced 
under thermodiffusively unstable conditions (Le < Le,) : recall that Le > Le, in the 
present calculations. Similarly, one might expect to see a broadening or increased 
variance in the curvature p.d.f.s for Le < Le,. 

Another global aspect of the flame structure that is of interest is the scales of 
wrinkling. Two simple scales have been introduced in equations (A 18) and (A 19). 
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There lbrush (width of turbulent flame brush) is a length characteristic of the largest 
scales of wrinkling and 1, (a curvature-based scale) is characteristic of the smallest. 
These values (suitably normalized) are reported in table 3. There it can be seen that 
with the exception of low-Reynolds-number Cases 5 and 6, lbrush generally ranges 
from one to two times the turbulence integral lengthscale 1 while 1, is of the order of 
the laminar flame thickness. 

5. Discussion 
Most numerical simulations and phenomenological models of turbulent premixed 

combustion have not included nonunity Lewis number effects (Bray & Libby 1986; 
Candel et al. 1988; Pope & Cheng 1988; Cant & Bray 1988; Maistret et al. 1989; 
El Tahry 1990; Cant et al. 1990a; Bray 1990). The present results suggest that in 
fact, the Lewis number has a strong influence on the local and global structure 
of turbulent flames. While straining has been shown to have an influence on the 
distribution of local flamelet speed in Le = 1 flames, this effect is small compared to 
the large strain and curvature effects on both local and global quantities that have 
been found in the non-unity Lewis number simulations. 

Complex chemistry of hydrocarbon fuels makes the definition of a single mixture 
Lewis number problematic : a Lewis number can be defined for each species and these 
Lewis numbers will be spatially non-uniform. Hydrogen, for example, diffuses in air 
at about twice the rate of a light hydrocarbon such as methane. Away from 
stoichiometric, the most relevant Lewis number influencing overall reactant 
consumption rate reasonably can be expected to be the Lewis number based on 
diffusion of the limiting (deficient) reactant through the pre-heat zone and into the 
reaction zone (Williams, private communication). Hence the results reported here for 
single-step chemistry and uniform Lewis number may remain qualitatively valid for 
more complex kinetics. 

An overall Lewis number based on the deficient reactant can be calculated using 
a complex-chemistry stagnation-point flame code. Adopting this approach, Blint 
(private communication) has found that Lewis numbers for methaneair flames for 
equivalence ratios of 0.8 to 1.2 are well within the range of 0.8 < Le < 1.2 covered in 
the present study (Le < 1 for fuel-lean). Methane is not typical of heavy hydrocarbon 
fuels, however. Moreover, the deficient-reactant-based Lewis number is inadequate 
close to stoichiometric. For example, fuel-based Lewis numbers for propaneair 
flames range from 1.7 to 1.9 for equivalence ratios between 0.3 and 2.0, while Lewis 
numbers based on oxygen or nitrogen remain close to unity over this range of 
equivalence ratios. (These values have been computed for atmospheric pressure 
flames with = 300 K ;  Blint, private communication.) This implies a step change 
in Lewis number at  stoichiometric that is not physically meaningful : a single global 
Lewis number based on deficient reactant does not suffice close to stoichiometric 
(Chelliah & Williams 1987 ; Williams, private communication). In general, Lewis 
numbers are greater than unity for heavy hydrocarbon fuels at lean conditions 
typical of internal combustion engine operation. This may contribute to the 
‘robustness ’ of the wrinkled flame sheet combustion regime in engines. 

Experimental validations of the present computational results require local 
instantaneous measurements of the reaction rate in a turbulent flame, and thus 
constitute a practically challenging problem. However, qualitative support can be 
found in a number of recent experimental studies. Becker et al. (1990) have studied 
the influence of Lewis number on premixed turbulent flame structure using OH 
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fluorescence as a marker of the reaction zone. They observe a correlation between 
local burning rate (OH fluorescence intensity) and local flame curvature that is 
similar to  that seen in the present Le > 1 computations. (The Lewis number based 
on fuel is greater than unity for their fuel-lean propane-air flame.) I n  the mean, 
curvature effects were found to be negligible for intense turbulence while remaining 
important for weak turbulence. 

Additional corroborative evidence for strong Lewis number effects in high 
Reynolds number turbulent premixed flames may be found in the experiments of Wu 
et al. (1990), Cheng, Goix & Shepherd (private communication) and Lee, North & 
Santavicca (1991). I n  the former, substantial changes in flame wrinkling and flame 
length with changes in equivalence ratio for a premixed hydrogen-air jet flame are 
attributed to  differential diffusion effects : for the same mean flow, turbulence 
intensity, and undisturbed laminar flame speed, Wu et al. (1990) report higher 
wrinkling and shorter flame length (implying larger reacting flame sheet area) by a 
factor of two for their fuel-lean flame (Le < 1 )  compared to  their fuel-rich flame 
(Le > 1 ) .  Cheng et al. (private communication) find increased flame area and a higher 
fractal dimension, implying more fine-scale flame wrinkling, for Le < 1 than for 
Le > 1 in stagnation-point turbulent premixed flames for various fuel-air mixtures 
(for the same turbulence intensity and laminar flame speed). Lee et al. (1991) show 
symmetric flame curvature p.d.f.s having zero mean and variances that increase with 
increasing turbulence intensity and that are higher for Le < 1 than for Le > 1 : these 
results are for freely propagating nearly one-dimensional flames at turbulence 
Reynolds numbers between 100 and 700. 

Several qualitative similarities between present results and three-dimensional 
constant-density simulations have been pointed out, including the predominance of 
positive tangential strain rates and the scaling of (a,) with turbulence microscales. 
Lewis-number effects in three-dimensional constant-property turbulence are the focus 
of the computational study by Rutland & Trouvk (1990). Differences between the 
present results and conclusions drawn from propagating surface simulations 
(Girimaji & Pope 1992) include the near symmetry of the flame curvature p.d.f.s, 
numerical values of C,, and the strain rate-curvature correlation found in the 
present study. 

Intentionally, we have not ventured to draw quantitative correlations from these 
results because of the two-dimensional, non-stationary (in a statistical sense) nature 
of the computations. Nevertheless, we feel that  these calculations shed new light on 
the structure of turbulent flames, particularly in pointing out the importance of 
flame curvature and molecular effects on turbulent flame structure. Results of three- 
dimensional constant property simulations a t  parameter ranges far from those of 
practical flames are also likely to  be quantitatively non-representative of high- 
Reynolds- and high Damkohler-number turbulent flames. The predominantly two- 
dimensional flame structure that has been found consistently in a number of three- 
dimensional computational studies of turbulent premixed flames or propagating 
surfaces (Ashurst 1990; Cant et al. 1990b; Girimaji & Pope 1992) lends support to the 
two-dimensional computational approach adopted here. Ashurst ( 1990) suggests 
that an improved two-dimensional representation would include a weak out-of-plane 
extensive strain to counteract (through vortex stretching) the viscosity-induced 
vorticity suppression through the flame that characterizes the present computations 
(figure 5 4 .  

The results of this study have been explained in terms of classic thermodiffusive 
effects for laminar premixed flames. The relevance of molecular effects in high- 
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Reynolds-number flames bears some consideration. There are two issues : first, can 
molecular effects remain important as the Reynolds number continues to increase ; 
and secondly, are molecular effects important at  Reynolds numbers of interest in 
practical applications ? The answer to both questions appears to be affirmative. As 
long as there remains a local flamelet-like structure to the turbulent flame, it is 
feasible that molecular effects could remain important at any arbitrarily high 
Reynolds number. Parameter ranges characterizing the flamelet regime of turbulent 
premixed combustion are the subject of a recent numerical study by Poinsot et al. 
(1991). Experimental evidence for thermal-diffusive effects in high-Reynolds number 
premixed jet flames has been discussed earlier. 

To address the second issue, the ratios of scales in these computations is not 
atypical of those encountered in at least one important application of turbulent 
premixed combustion, that of a homogeneous-charge reciprocating engine. The 
flamelet character of the flame front in internal combustion engines has been verified 
in a number of visualization experiments (e.g. Mantzaras, Felton & Bracco 1988; 
Ziegler et al. 1988). While there remains a great deal of uncertainty in scale estimates 
for practical engines (Abraham, Williams & Bracco 1985; Bracco 1988; Blint 1988, 
1991), the following ranges have been estimated for propane-air mixtures in a model 
engine (Mantzaras et al. 1988; Blint 1988, 1991). For undiluted stoichiometric flames, 
u'/sy ranges from 0.5 to 4 as engine speed increases from 300 to 2400 r.p.m. ; for leaner 
mixtures (s: decreasing) or higher engine speed (u' increasing), the relative turbulence 
intensity is even higher. The lengthscale ratio 1/all ranges from about 30 for a 
baseline condition (stoichiometric, p = 5 atm, = 600 K, undiluted) to as low as 
three for stoichiometric high T,, low p ,  or high exhaust-gas-dilution flames. Flame 
thicknesses generally are wider than the turbulence microscale: Z,J& is equal to 
about a third for the baseline flame at 300 r.p.m. engine speed, but a,, can be an 
order of magnitude larger than 1, for exhaust-gas-diluted flames. Turbulence 
Reynolds numbers Re, (based on unburnt gas viscosity) range from about 300 to 1500 
even a t  low engine speeds of 300 r.p.m. to 1200 r.p.m ; these Re, are higher than most 
of the cases computed here, although Case 4 falls in this range at later times (table 
4). The regime of combustion represented by the present computations thus 
approaches the mode of combustion in at least one (moderate Reynolds number) 
application. We emphasize that the value of Re, reported in tables 1 and 4 can vary 
by a factor of two, depending on the choice of lengthscale 1 .  

The present results have implications for the implementation of flamelet models of 
turbulent premixed combustion. The prototype laminar configuration for which 
flamelet libraries have been generated generally is that of a one-dimensional laminar 
stagnation-point burner. This configuration accounts, in some sense, for the effect of 
tangential strain, but does not account for flame-front curvature. The present results 
show that for non-unity Lewis numbers, the local flame structure is more strongly 
influenced by the local flame curvature than by the local tangential strain rate. The 
net consumption rate of reactants per unit area of flame (mean flamelet speed), 
however, appears to be most strongly influenced by straining. Thus in the 
construction of flamelet libraries, it may suffice to include only strain effects if it is 
the net consumption rate that is of interest. Predictions of phenomena such as 
quenching or pollutant formation that may be dominated by local hot or cold spots 
in the flame front, on the other hand, require that curvature be accounted for. The 
weak dependence of total flame surface area on Lewis number that has been found 
may be more important a t  higher Reynolds numbers where there is a broader range 
of hydrodynamic scales that can influence the flame. 
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6. Summary 
Calculations of premixed turbulent flame structure in two-dimensional turbulence 

have been reported, focusing on the influence of Lewis number on the local and global 
flame structure. These computations include dilatation and variable transport 
coefficients. It has been found that:  

(i) The local flamelet speed in the Le = 1 flame is everywhere nearly identical to 
that of an undisturbed laminar flame. 

(ii) For Le + 1, the local flamelet speed differs from that of the undisturbed laminar 
flame and correlates strongly with local flame curvat.ure. 

(iii) Curvature effects cancel out when the mean flamelet speed (averaged along the 
flame front) is computed. Only flame strain effects persist to result in a mean 
flamelet speed that is higher than the laminar value for Le < 1, is identical to the 
laminar value for Le = 1, and is lower than the laminar value for Le > 1.  

(iv) Thermodiffusive effects result in slightly more flame surface for Le < 1 than for 
Le > 1. This, combined with the strong dependence of mean flamelet speed on 
Le, results in a strong dependence of turbulent flame speed on Le. 

(v) P.d.f.s of flame curvature are nearly symmetric with a near-zero mean value; 
the maximum curvatures found are of the order of the reciprocal of the laminar 
flame thickness. 

(vi) P.d.f.s of strain rate tangent to the flame are skewed towards positive 
(extensive) strains with a mean strain rate of the order of the inverse of the 
timescale of the smallest turbulent motions. 

These results imply that, for the range of parameters investigated, curvature is 
more important than strain rate in determining the local flame structure. However, 
the mean consumption rate per unit area of flame (averaged along the flame front) 
appears to depend primarily on the net positive mean tangential strain rate. The 
turbulent flame speed, which is the product of the flame area and the mean 
consumption rate, is therefore influenced slightly by thermodiffusive effects (which 
modify the flame area) and strongly by the mean strain rate (which creates flame 
area and modifies the mean consumption rate). Both effects influence the turbulent 
flame speed in the same way so that it is strongly Lewis number dependent. Stronger 
flame area effects, in particular, are expected in cases where the Lewis number Le is 
less than the critical value of Le, (Le > Le, in all cases reported here). 

Questions remaining to be addressed include : further comparisons between two- 
and three-dimensional calculations to quantify the limitations and virtues of each ; 
relative contributions of straining versus curvature to the total flame stretch 
A-' dA/dt ; and, quantitative correlations between global quantities such as turbulent 
flame speed, turbulent r.m.s. velocity, and Lewis number. 
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Appendix 
Velocity, length, and time scales characterizing the hydrodynamic field and the 

chemistry are introduced. Three sets of scales are calculated : scales characteristic of 
the large-scale turbulent motions ; turbulence microscales representing the smallest 
fluid motions; and, chemical scales based on an undisturbed steady planar laminar 
flame. In gA.2, some procedural details of extracting flame curvature, strain rates, 
and wrinkling scales from the computed fields are given. 

A.1. Scales 

We restrict our attention to two-dimensional turbulence with instantaneous velocity 
components u1 = ul(xl, x,, t ) ,  u2 = up (x,, x,, t ) .  An overbar denotes a volume (area) 
average over the flow field while angled brackets ( ) will be reserved for flame-area- 
(length-) weighted means. All turbulence scales are calculated as conditional averages 
in the fresh reactants (E > Ythresh, with Ythresh = 0.9). 

Scales characteristic of the energy-containing turbulent motions are computed as 
follows. A root-mean-square turbulence intensity u’ is calculated as, 

- -  
uf2 = KuI2 + u’,”} = { Jv [(u, - 116;)2 + (u, -zJ2] dT/V} . (A 1) 

Definition of an appropriate lengthscale is more difficult. For comparison with model 
results, a dissipation-based scale 1, is used conventionally, 

1, = U f 3 / € .  (A 2) 

€ = -  d $3’ (A 3) 

Here 6 is the viscous dissipation rate of turbulence kinetic energy, 

and s,, = $(au,/ax, + au,/ax,) is the rate-of-strain tensor. For homogeneous turbulence, 
longitudinal integral scales I , ,  and I , ,  based on two-point velocity correlations are 
computed as, 

In three-dimensional high-Reynolds-number isotropic equilibrium turbulence, E can 
be interpreted as the rate of spectral energy transfer from large to small scales 
through the inertial subrange: the lengthscales then are related by I , ,  = I , ,  = Cl, 
where C is a constant whose value depends on the details of the energy spectrum. 
Typically C z 0.4-0.5 (with u’, = $k; Tennekes & Lumley 1972; Hinze 1975). In  the 
present simulations, we find in general that l , ,  = l , ,  to within a factor of two, that 
1, typically is several times larger than Z,,, and that L, (equation (14)) also is several 
times larger than l , ,  at t = 0 (table 4). Inequality of Z,, and l,, is attributed to 
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imperfect turbulence inlet boundary conditions and to statistical error in estimating 
these scales; the latter is particularly high for large-length-scale cases a t  late times 
where there may be only one or two integral scales of fresh gases in the computational 
domain. While at first sight the two-point integral scales of (A 4 )  might be expected 
to more rigorously represent the energy-containing motions, in fact, 1, is found to be 
better behaved computationally (Poinsot 1991 ). Thus we adopt the lengthscale 1 
defined by, 

The coefficient 0.42 is derived for a three-dimensional von KBrmBn spectrum (Hinze 
1975) and also is close to the value obtained for the standard k--E model. A 
turbulence timescale 7 is formed using u' and I as, 

1 G 0.421, = 0.42ur3/e. (A 5) 

7 = l/u', (A 6) 

Re, = u'l/v. (A 7) 

and a turbulence Reynolds number Re, is defined as, 

Because of the wide range of lengthscales that might legitimately be adopted to 
characterize the large-scale turbulent motions, it is essential that one be precise 
regarding scaling conventions when comparing the present scales and Reynolds 
numbers with experimental or turbulence modelling results. 

Because there is no mechanism for an inertial-range cascade of energy from large to 
small scales in two-dimensional turbulence, it is not appropriate to take the 
Kolmogorov scales (based on E and the fluid viscosity v) as the scales characteristic of 
the smallest turbulent motions. Instead, it has been argued (Herring et al. 1974; 
Lesieur 1987) that appropriate microscales for two-dimensional turbulence should be 
defined using the mean-square vorticity or enstrophy 52 and its viscous dissipation 
rate 7: 

(A 8) 

(A 9) 

52 = 0.51V x uI', 
'I = u p  x (V x up. 

Enstrophy-based microscales I ,  (length), 7,  (time), and u,, (velocity) are then given as, 

1, = (v3/q):, 7,, = '14, u,, = .$IT,,. (A 10) 

1, = (V3/C)',  ?k = (V /C) ' ,  uk = f?k/?k. (A 11) 

Kolmogorov microscales I, ,  7k, and uk also are reported, primarily for comparison 
purposes. These are defined as, 

Chemical scales are based on the structure of an undisturbed planar laminar flame. 
The undisturbed laminar flame speed s: is taken as the velocity scale, and a 
lengthscale a,, is defined based on the temperature profile. 

s: = Iw dnlp,, 

4, = (%- T,)/(dT/dn),,x, (A 13) 

71 = all/s:. (A 14) 

where n indicates the coordinate normal to the flame. A chemical timescale 7f is then, 
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A.2. Flame curvature, strain rates, and wrinkling 

The flame is identified as an isocontour of a scalar $ (temperature or reactant mass 
fraction) yielding a set of N (xl, 5,) pairs. These are parameterized in terms of 
arclength s starting a t  one end of the flame as (x?)(dn)), z!j@(dn))), n = 1,2, ..., N. 
Local flame curvature W-' (9 being the radius of curvature) is then calculated as, 

where the derivatives are evaluated using finite differences. 
Hydrodynamic strain rates on the flame front are computed differently. The local 

unit normal vector n and unit tangent vector t to the flame are defined using the 
gradient of the scalar field $ directly, 

n = V$/(V$.V$)~, 

where i3 is a unit basis vector normal to the (x,,x,)-plane for a right-handed 
coordinate system. 

t x n = i,, (A 16) 

The strain rates normal to and tangent to the flame are then, 

a, = nn : Vu, a, = t t  : Vu. (A 17) 

These satisfy the identity an+at = V - u  (Candel & Poinsot 1990). 
Scales of flame wrinkling can be defined in many ways. For our purposes, two 

simple definitions suffice. The largest scale of wrinkling is characterized by the width 
of the turbulent 'flame brush', that is, 

Zbrush = max {x?)(dn))}- min {x?)(dn))}. (A 18) 

The second scale that is introduced is based on the area-weighted flame curvature, 

n-1, N n=1, N 

z9 = ([w-' - ( W - ~ ) I ~ ) - ~  (A 19) 

The high power of curvature emphasizes the smaller scales of flame wrinkling. 

REFERENCES 

ABRAHAM, J., WILLIAMS, F. A. & BRACCO, F .  V. 1985 A discussion of turbulent flame structure in 
premixed charges. SAE Paper no. 850345. 

ASHURST, W. T. 1990 Geometry of premixed flames in three-dimensional turbulence. In Proc. 
1990 Summer Program, Center for Turbulence Research, Stanford University & NASA Ames, 
pp. 245-253. 

ASHURST, W. T. & BARR, P. K. 1983 Stochastic calculation of laminar wrinkled flame propagation 
via vortex dynamics. Combust. Sci. Technol 34, 227-256. 

ASHURST, W. T., PETERS, N. & SMOOKE, M. D. 1987 Numerical simulation of turbulent flame 
structure with non-unity Lewis number. Combust. Sci. Technol. 5 3 ,  339-375. 

ASHURST, W. T., SHIVASHINSKY, G. I. & YAKHOT, V. 1988 Flame-front propagation in nonsteady 
hydrodynamic fields. Combust. Sci. Technol. 62, 273-284. 

BATCHELOR, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press. 
BECKER, H.,  MONKHOUSE, P. B., WOLFRUM, J., CANT, R. S., BRAY, K. N. C., MALY, R. ,  PFISTER, 

W., STAHL, G. & WARNATZ, J. 1990 Investigation of extinction in unsteady flames in 
turbulent combustion by 2D-LIF of OH radicals and flarnelet analysis. 23rd Symp. (Intl) on 
Combust, pp. 817-823. The Combustion Institute, Pittsburgh. 



Numerical simulations of Lewis number effects 435 

BLINT, R. J. 1988 Flammability limits for exhaust gas diluted flames. 22nd (Intl) on Combust. pp. 

BLINT, R. J. 1991 Stretch in premixed laminar flames under IC  engine conditions. Combust. Sci. 

BRACCO, F. V. 1988 Structure of flames in premixed-charge I C  engines. Combust. Sci. Technol. 58, 

BRAY, K. N. C. 1990 Studies of turbulent burning velocity. Proc. R .  Soc. Lond. A431, 315-335. 
BRAY, K. N. C. & LIBBY, P. 1986 Passage times and flamelet crossing frequencies in premixed 

turbulent combustion. Combust. Sci. Technol. 47, 253-274. 
CANDEL, S., MAISTRET, E., DARABIHA, N., POINSOT, T., VEYNANTE, D. & LACAS, F. 1988 

Experimental and numerical studies of turbulent ducted flames. Marble Symp. CALTECH. 
CANDEL, S. M. & POINSOT, T. J. 1990 Flame stretch and the balance equation for the flame area. 

Combust. Sci. Technol. 70, 1-15. 
CANT, R. S. & BRAY, K. N. C. 1988 Strained laminar flamelet calculations of premixed turbulent 

combustion in a closed vessel. 22nd Symp. (Intl) on Combust. pp. 791-799. The Combustion 
Institute, Pittsburgh. 

CANT, R. S., POPE, S. B. & BRAY, K. N. C. 1990a Modelling of flamelet surface-to-volume ratio in 
turbulent premixed combustion. 23rd Symp. (Intl) on Combust. pp. 809-815. The Combustion 
Institute, Pittsburgh. 

CANT, R. S., RUTLAND, C. J. & TROUVE, A. 1990b Statistics for laminar modeling. In  Proc. 1990 
Summer Program, Center for Turbulence Research, Stanford University & NASA Ames, pp. 

CHELLIAH, H. K. & WILLIAMS, F. A. 1987 Asymptotic analysis of two-reactant flames with 
variable properties and Stefan-Maxwell transport. Combust. Sci. Technol. 51, 12S144. 

CLAVIN, P. 1985 Dynamic behavior of premixed flame fronts in laminar and turbulent flows. 
Prof. Energy Combust. Sci. 11, 1-59. 

EL TAHRY, S. H. 1990 A turbulence combustion model for premixed charge engines. Combust. 
Flame 79, 122-140. 

EL TAHRY, S. H., RUTLAND, C. J. & FERZIGER, J. H. 1991 Structure and propagation speeds of 
turbulent premixed flames - a numerical study. Combust. Flame 83, 155-173. 

GHONIEM, A. F. & KRISHNAN, A. 1988 Origin and manifestation of flow-combustion interactions 
in a premixed shear layer. 22nd Symp. ( I d )  on Combust. pp. 665-675. The Combustion 
Institute, Pittsburgh. 

GIRIMAJI, S. S. & POPE, S. B. 1992 Propagating surfaces in isotropic turbulence. J. Fluid Mech. 

HERRING, J. R., ORSZAG, S. A,, KRAICHNAN, R. H. & Fox, D. G. 1974 Decay of two-dimensional 

HINZE, J. 0. 1975 Turbulence, 2nd edn. McGraw-Hill. 
KERSTEIN, A. R., ASHURST, W.T. & WILLIAMS, F. A. 1988 Field equations for interface 

propagation in an unsteady homogeneous flowfield. Phys. Rev. A 37, 2728-2731. 
LEE. T.-W., NORTH, G. L. & SANTAVICCA, D. A. 1991 Curvature and orientation statistics of 

turbulent premixed flame fronts. Combust. Sci. Technol. (submitted). Also presented at Spring 
1991 meeting of the Western States Section of the Combustion Institute. 

LELE, S. 1990 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 
(submitted). 

LESIEUR, M. 1987 Turbulence in Fluids. Martinus Nijhoff. 
MAISTRET, E., DARABIHA, N., POINSOT, T., VEYNANTE, D., LUCAS, F., CANDEL, S. & ESPOSITO, E. 

1989 Recent developments in the coherent flame description of turbulent combustion (ed. A. 
Dervieux & B. Larrouturou). Lecture Notes in Physics. Numerical Combustion, vol. 351. 

MANTZARAS, J., FELTON, P. G. & BRACCO, F. V. 1988 Three-dimensional visualization of 
premixed-charge engine flames. SAE Paper no. 881635. 

MENEVEAU, C. & POINSOT, T. 1991 Stretching and quenching of flamelets in premixed turbulent 
combustion. Combust. Flame 86, 311-332. 

POINSOT, T. 1991 Flame ignition in a premixed turbulent flow. In Center for Turbulence Res. Ann. 
Res. Briefs, Center for Turbulence Research, Stanford University & NASA Ames, pp. 1-22. 

1547-1554. The Combustion Institute, Pittsburgh. 

Technol. 75, 115-128. 

209-230. 

271-279. 

234, 247-277. 

homogeneous turbulence. J. Fluid Mech. 66, 417-444. 



436 D.  C. Haworth and T .  J .  Poinsot 

POINSOT, T., ECHEKKI, T. & MUNGAL, M.G. 1992 A study of the laminar flame tip and 
implications for premixed turbulent combustion. Combust. Sci. Technol. 81, 45-55. 

POINSOT, T. & LELE, S. 1992 Boundary conditions for direct simulations of compressible viscous 
flows. J. Comput. Phys. 101, 104-129. Also CTR Manuscript 102, December 1989, Center for 
Turbulence Research, Stanford University. 

POINSOT, T., VEYNANTE, D. & CANDEL, S. 1990 Diagrams of premixed turbulent combustion 
based on direct simulation. 23rd Symp. (Zntl) on Combust., pp. 613-619. The Combustion 
Institute, Pittsburgh. Also CTR Manuscript 110, June 1990, Center for Turbulence Research, 
Stanford University. 

POINSOT, T., VEYNANTE, D. & CANDEL, S. 1991 Quenching processes and premixed turbulent 
combustion diagrams. J. Fluid Mech. 228, 561-606. 

POPE, S. B. 1988 Evolution of surfaces in turbulence. Zntl J. Engng Sci. 26, 44H69 .  
POPE, S. B. & CHENG, W. 1988 The stochastic flamelet model of turbulent premixed combustion. 

22nd Symp. (Intl) on Combust. pp. 781-789. The Combustion Institute, Pittsburgh. 
RUTLAND, C. J., FERZIGER, J. H. & EL TAHRY, S. H. 1990 Full numerical simulation and modeling 

of turbulent premixed flames. 23rd Symp. (Intl) on Combust., pp. 621-627. The Combustion 
Institute, Pittsburgh. 

RUTLAND, C. & TROUVE, A. 1990 Premixed flame simulations for nonunity Lewis numbers. In 
Proc. 1990 Summer Program, Center for Turbulence Research, Stanford University & NASA 
Ames, pp. 29S309. 

TENNEKES, H. & LUMLEY, J. L. 1972 A First Course in Turbulence. MIT. 
WILLIAMS, F. A. 1985 Combustion Theory, 2nd edn. Benjamin Cummings. 
WRAY, A. 1990 Minimal storage time-advancement schemes for spectral methods. J. Cornput. 

Phys. (submitted). 
Wu, M. S., KWON, S., DRISCOLL, J .  F. & FAETH, G. M. 1990 Turbulent premixed hydrogen/air 

flames at  high Reynolds numbers. Combust. Sci. Technol. 7 3 ,  327-350. 
YEUNG, P. K., GIRIMAJI, S .  S. & POPE, S. B. 1990 Straining and scalar dissipation on material 

surfaces in turbulence : implications for flamelets. Combust. Flame. 79, 34&365. 
ZIEGLER, G. F. W., ZETTLITZ, A., MEINHARDT, P., HERWEG, R., MALY, R. & PFISTER, W. 1988 

Cycle-resolved two-dimensional flame visualization in a spark-ignition engine. SAE Paper no. 
881634. 


